Solution 5

1. In a metric space (X, d), its metric ball is the set $\{y \in X : d(y, x) < r\}$ where x is the center and r the radius of the ball. May denote it by $B_r(x)$. Draw the unit metric balls centered at the origin with respect to the metrics d_2, d_∞ and d_1 on \mathbb{R}^2 .

Solution. The unit ball $B_1^2(0)$ is the standard one, the unit ball in d_{∞} -metric consists of points (x, y) either |x| or |y| is equal to 1 and $|x|, |y| \leq 1$, so $B_1^{\infty}(0)$ is the unit square. The unit ball $B_1^1(0)$ consists of points (x, y) satisfying $|x|+|y| \leq 1$, so the boundary is described by the curves $x + y = 1, x, y \geq 0$, $x - y = 1, x \geq 0, y \leq 0, -x + y = 1, x \leq 0, y \geq 0$, and $-x - y = 1, x, y \leq 0$. The result is the tilted square with vertices at (1,0), (0,1), (-1,0) and (0,-1).

2. Determine the metric ball of radius r in (X, d) where d is the discrete metric, that is, d(x, y) = 1 if $x \neq y$.

Solution. When $r \in (0, 1]$, $B_r(x) = \{x\}$. When r > 1, $B_r(x) = X$.

3. Consider the functional Φ defined on C[a, b]

$$\Phi(f) = \int_a^b \sqrt{1 + f^2(x)} \, dx.$$

Show that it is continuous in C[a, b] under both the supnorm and the L^1 -norm. A real-valued function defined on a space of functions is traditionally called a functional.

Solution. Let $h(y) = \sqrt{1+y^2}$. Then $\Phi(f) = \int_a^b h(f) dx$. Since $h'(y) = \frac{y}{\sqrt{1+y^2}} \le 1$, one has, by the mean value theorem

$$\begin{aligned} |\Phi(f) - \Phi(g)| &\leq \int_a^b |h(f) - h(g)| dx \leq \int_a^b |f - g| \max_{s \in (g, f)} |h'(s)| dx \\ &\leq \int_a^b |f - g| dx. \end{aligned}$$

Hence it is continuous in C[a, b] under both the d_1 -distance. As d_{∞} is stronger than d_1 , the functional is also continuous in d_{∞} .

4. Consider the functional Ψ defined on C[a, b] given by $\Psi(f) = f(x_0)$ where $x_0 \in [a, b]$ is fixed. Show that it is continuous in the supnorm but not in the L^1 -norm. Suggestion: Produce a sequence $\{f_n\}$ with $||f_n||_1 \to 0$ but $f_n(x_0) = 1$, $\forall n$. Ψ is called an evaluation map.

Solution. $|\Psi(f) - \Psi(g)| = |f(0) - g(0)| \leq \max_{x \in [-1,1]} |f(x) - g(x)|$. Hence it is continuous in the d_{∞} -metric. Let f_n be continuous function such that $f_n(x) = 1, x \in [-1/n, 1/n]; f_n(x) = 0, x \in [-2/n, 2/n]$, and $0 \leq f_n \leq 1$. Then $\Psi(f_n) = 1$ but $f_n \to 0$ in the d_1 -metric.

5. Let K be a continuous function defined on $[0,1] \times [0,1]$ and consider the map

$$T(f)(x) = \int_0^1 K(x, y) f(y) dy$$

Show that this map maps $(C[0,1], \|\cdot\|_1)$ to $(C[0,1], \|\cdot\|_\infty)$ continuously.

Solution. Let $f_n \to f$ in L^1 -norm. We have

$$|T(f_n(x)) - T(f(x))| = \left| \int K(x, y)(f_n(y) - f(y)) \, dy \right| \le M ||f_n - f||_1$$

where M is the supremum or maximum of K. Taking sup over all x on the left, we get

$$||T(f_n) - T(f)||_{\infty} \le K ||f_n - f||_1$$

so T is continuous as asserted.

Almost forgot to verify that $T \circ f \in C[0, 1]$. Using the uniform continuity of K, for $\varepsilon > 0$, there is some δ such that $|K(x, y) - K(x', y')| < \varepsilon$ for $|(x, y) - (x', y')| < \delta$. Therefore,

$$|T(f(x_1)) - T(f(x_2))| \le \int_0^1 |K(x_1, y) - K(x_2, y)| |f(y)| \, dy \le C\varepsilon,$$

where

$$C = \int_0^1 |f(y)| \, dy$$

is a constant. So $T \circ f$ is continuous.

6. Let A and B be two sets in (X, d) satisfying d(A, B) > 0 where

$$d(A,B) \equiv \inf \left\{ d(x,y) : (x,y) \in A \times B \right\}.$$

Show that there exists a continuous function f from X to [0,1] such that $f \equiv 0$ in A and $f \equiv 1$ in B. This problem shows that there are many continuous functions in a metric space.

Solution. Let $d_0 = d(A, B) > 0$. Fix a continuous function φ satisfies $\varphi(0) = 0, \varphi(x) = 1, x \ge d_0$, and $0 \le \varphi \le 1$ on $[0, \infty)$. Our desired function is given by $\varphi(d(x, A))$ after noting that the composition of continuous functions is again continuous.

Note. Taking $A = \{x_1\}$ and $B = \{x_2\}$ be singleton sets consisting distinct points, d(A, B) > 0 clearly holds. By this problem there is a continuous function which is 0 at x_1 and 1 at x_2 , showing that there are many many continuous real-valued functions on a metric space.

7. In class we showed that the set $P = \{f : f(x) > 0, \forall x \in [a, b]\}$ is an open set in C[a, b]. Show that it is no longer true if the norm is replaced by the L^1 -norm. In other words, for each $f \in P$ and each $\varepsilon > 0$, there is some continuous g which is negative somewhere such that $||g - f||_1 < \varepsilon$.

Solution. Fix a point, say, a and consider the continuous piecewise function φ_k which is equal to 1 at a and vanishes on [a + 1/k, b]. Then

$$\int_a^b \varphi_k(x) dx = \frac{1}{2k} \; .$$

Let $f \in C[a, b]$ and $g_k = f - (f(a) + 1)\varphi_k$ also belongs to C[a, b] and $g_k(a) = -1 < 0$, but

$$||f - g_k||_1 = \int_a^b |f(x) - g_k(x)| dx = \frac{f(a) + 1}{2k} \to 0$$

as $k \to \infty$.

8. Show that [a, b] can be expressed as the intersection of countable open intervals. It shows in particular that countable intersection of open sets may not be open.

Solution. Simply observe

$$[a,b] = \bigcap_{j=1}^{\infty} (a - 1/j, b + 1/j) .$$

9. Optional. Show that every open set in \mathbb{R} can be written as a countable union of disjoint open intervals. Suggestion: Introduce an equivalence relation $x \sim y$ if x and y belongs to the same open interval in the open set and observe that there are at most countable many such intervals.

Solution.

Let V be open in \mathbb{R} . Fix $x \in V$, there exists some open interval $I, x \in I, I \subseteq V$. Let $I_{\alpha} = (a_{\alpha}, b_{\alpha}), \alpha \in \mathcal{A}$, be all intervals with this property. Let

$$I_x = (a_x, b_x), a_x = \inf_{\alpha} a_{\alpha}, b_x = \sup_{\alpha} b_{\alpha}.$$

satisfy $x \in I_x$, $I_x \subseteq V$ (the largest open interval in V containing x). It is obvious that $I_x \cap I_y \neq \phi \Rightarrow I_x = I_y$. Let $x \sim y$ if $I_x = I_y$. Then one can show that \sim is an equivalence relation. By the discussion above, we have

$$V = \bigcup_{x \in V} I_x = \bigcup_{[x] \in V/\sim} \left(\bigcup_{y \sim x} I_x \right) = \bigcup_{[x] \in V/\sim} I_x,$$

which is a disjoint union. Moreover V/\sim is at most countable since we can pick a rational number in each I_x to represent the class $[x] \in V/\sim$. Thus V can be written as a countable union of disjoint open intervals.

10. Let f be a function from (X, d) to (Y, ρ) . Show that f is continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y.

Solution. \Rightarrow). Assume on the contrary there is an open G whose $f^{-1}(G)$ is not open, that is, there is some $x \in f^{-1}(G)$ so that the balls $B_{1/n}(x)$ always intersect the outside of $f^{-1}(G)$. Pick $x_n \in B_{1/n}(x)$ lying outside $f^{-1}(G)$. Since G is open, fix some $B_r(f(x)) \subset G$. That x_n lying outside $f^{-1}(G)$ implies $f(x_n)$ lying outside G, and in particular $B_r(f(x))$, so $\rho(f(x_n), f(x)) \ge r > 0$ for all n. On the other hand, as $x_n \to x$, by the continuity of f at x. We have, $f(x_n) \to f(x)$, that is, $\rho(f(x_n), f(x)) \to 0$, contradiction holds.

 \Leftarrow). Let $x_n \to x$ in X. The metric ball $B_{\varepsilon}(f(x))$ is open in Y, by assumption $f^{-1}(B_{\varepsilon}(f(x)))$ is an open set containing x. Hence we can find some metric ball $B_{\delta}(x) \subset f^{-1}(B_{\varepsilon}(f(x)))$. As $x_n \to x$, there is some n_0 such that $x_n \in B_{\delta}(x)$ for all $n \ge n_0$. Hence, $f(x_n) \in B_{\varepsilon}(f(x))$ for all $n \ge n_0$, done.